- 张文彬;杨柳林;董原辰;戴卓君;刘雅杰;秦朗;康强;詹世革;杨俊林;
智能材料自20世纪80年代以来逐渐兴起,成为材料科学的重要方向,催生了一系列重要的概念材料。近几年来,人工智能的长足进步促使人们对智能材料的内涵和外延进行深入的反思:智能的物质基础是什么?是否存在集成思考、响应、自复制等多重能力的智能物质?如何理解、设计、合成和改造智能物质?当前化学、生命、材料、信息科学等学科的高速发展为回答这些问题提供了极佳的契机。针对智能物质的系统研究,不仅将带来对智能的全新认识,还将对先进材料、合成细胞、生命起源等相关领域产生重要影响,在为科学界提供全新研究对象的同时,也将为解决国家重大需求带来变革性的突破。本文基于国家自然科学基金委员会第391期“双清论坛”,总结了智能材料的研究现状、发展趋势及机遇挑战,凝练出未来相关领域的重点研究内容和亟需解决的关键科学问题。
2025年03期 v.39 376-388页 [查看摘要][在线阅读][下载 1505K] - 俞燕蕾;谢涛;刘明杰;张霄羽;潘峰;韦嘉;秦朗;
智能形变高分子材料是实现软体机器感知—驱动—传动—结构一体化设计的核心材料,对提高软体机器的适应性、自主性和作业能力至关重要。然而,目前智能形变高分子材料的感知和驱动性能以及智能化程度无法满足软体机器自主行为控制的需求。通过智能形变高分子材料的创新化学设计突破感知驱动能力弱和自主性匮乏的瓶颈问题是决定软体机器未来兴盛的关键。我国在智能形变高分子材料化学领域的研究已有长足进步,但欠缺以重大领域应用需求为导向的组织性和整体协同性。因此,仍需加大投入力度,有组织性地深入研究软体机器的组成核心,以推动未来软体机器技术的持续创新与发展。
2025年03期 v.39 389-397页 [查看摘要][在线阅读][下载 1640K] - 国瑞;张淇;刘静;
近年来,常温液态金属因一系列类生命现象与基础效应的发现,极大激发了人工生命与智能物质的探索。以这类材料为核心的各类功能体系,为实现超常规智能提供了崭新而富有前景的物质基础。除具备典型金属的基本功能外,液态金属还具有流动性、固液相变等物化性质,能够对外界刺激做出多元化响应,如大尺度可逆形变、逆重力攀爬,甚至展示出各种类生命行为,如自驱动、自组织、自分散、自生长、自修复、呼吸获能、自振荡和胞吞效应等。种种迹象表明,液态金属及其衍生材料、器件与系统正以某种“进化”方式,朝着构筑全新一代智能体系乃至可变形机器人的方向迈进。本文旨在介绍液态金属活物质的基本概念和演化路径,探讨液态金属典型的类生物活物质属性,总结其中的基础科学问题,并解读其对发展人工细胞、仿生器官以及智能机器人等方面提供的科学启示。同时,本文还将剖析研制液体集成型柔性智能机器人的可行途径,以及面临的科学挑战与技术机遇,最后对液态金属人工生命领域的发展前景进行展望。
2025年03期 v.39 398-407页 [查看摘要][在线阅读][下载 3069K] - 虞思汇;江海波;唐成强;宋佳恬;郑园园;朱正峰;李天睿;姜怡;张松林;孙雪梅;
智能纤维器件作为新一代电子器件的重要组成部分,已成为多学科交叉研究领域的前沿方向,在智能交互、能源革新和医疗健康等领域展现出广阔的应用前景。随着该领域的不断发展,现有的纤维材料、器件结构及制备工艺已难以满足尖端应用日益增长的性能需求。因此,亟需面向前沿领域开展纤维材料与器件结构的协同设计。本文以“材料—原理—器件—应用”为组织框架,系统综述了智能纤维材料(包括金属材料、高分子材料与碳纳米材料)及其相关智能纤维器件(涵盖传感检测、能量转化、能量储存与发光显示)在材料与结构设计、性能优化、连续化制备工艺以及前沿应用方面的最新研究进展。最后,结合新兴材料研究方法及智能织物生态系统的构建需求,展望了智能纤维及器件领域的未来发展与关键研究方向。
2025年03期 v.39 408-418页 [查看摘要][在线阅读][下载 2029K] - 宋璐;李敏;左小磊;
与传统的硬盘或磁带存储相比,DNA存储具有极高的存储密度和长期稳定性。通过将数字数据编码为DNA序列,利用合成和测序技术,可以将海量数据进行低成本、低能耗地存储及恢复。随着技术的不断进步,基于核酸信息材料的数据存储有潜力成为一种高效的数据存储解决方案,尤其适用于海量数据存储和长期数据存储。尽管DNA存储潜力巨大,但其大规模应用仍受限于合成成本及测序效率等瓶颈。本文综述了基于核酸信息材料的数据存储技术,探讨了利用核酸分子作为数据存储介质的最新研究进展,并提出了核酸存储在未来的研究方向和发展趋势。
2025年03期 v.39 419-431页 [查看摘要][在线阅读][下载 2309K] - 崔惠敬;王帆;李敬敬;孙静;马超;刘凯;张洪杰;
材料合成生物学通过改造生物系统制备战略金属、无机复合材料、高性能生物大分子及有机高分子材料,具有环境友好与资源高效优势,有望替代传统石油基制造模式。然而,其发展受限于微生物底盘适配性低、多尺度动态调控灵敏度不足、材料仿生设计策略缺失及规模化生产传质传热效率低等核心科学问题。本文聚焦上述挑战,提出结合人工智能开发代谢网络调控大模型与高通量筛选平台;推动生物—无机杂化系统设计,突破材料性能瓶颈;并倡导政策层面设立专项基金、完善知识产权转化机制。旨在推动“原料—合成—回收”全链条绿色制造体系构建,为资源替代、生物医学及低碳经济提供颠覆性解决方案。
2025年03期 v.39 432-440页 [查看摘要][在线阅读][下载 1497K] - 王新宇;安柏霖;钟超;
智能活体材料是材料科学与合成生物学深度交叉融合的创新领域,通过将工程化生命系统与非生命组分有机结合,赋予材料自我修复、环境响应及自适应等类生命特性。其核心目标是利用人工基因线路对微生物进行编程,从而实现自组织活体材料的智能调控,或结合半导体、水凝胶等人工材料构建杂合活体材料体系,突破天然生物系统的功能局限。目前智能活体材料在智能传感、精准医疗、环境修复、能源转化及智能建筑等领域展现出广阔应用前景,其发展将推动多学科交叉融合。该领域还需要在生物合成与生物集成、自我修复与自我再生、环境响应性与多细胞系统三个方面进行加强,提升智能化程度,为可持续发展与材料的产业变革提供新范式。
2025年03期 v.39 441-453页 [查看摘要][在线阅读][下载 2092K] - 王璟;陈怀城;刘雳宇;
受制于静态结构与固定响应模式等因素,传统智能材料的自适应调控与学习优化能力有限,无法应对复杂环境与动态需求。而当机器人技术的微型化、廉价化、智能化发展与集群技术突破相结合后,便催生了全新的智能材料理念——机器人物质,即以机器人个体为基本单元,依托自组织集群技术实现材料功能。通过整合环境感知、信息处理、耦合连接、力学性能、多态转换、能源续航与人—材交互七大基础功能模块,机器人物质具备自主决策、环境适应、可编程性、多功能性等智能特性。通过进一步与生物功能材料、适应性演化策略等技术相融合,机器人物质或将突破传统智能材料局限,在智能制造、精准医疗及极端环境探索中催生颠覆性应用。
2025年03期 v.39 454-464页 [查看摘要][在线阅读][下载 1608K] - 曹浈萍;陈焕;刘尽尧;
随着微生物科学、合成生物学和材料化学的快速发展,微生物活体智能医用材料作为一种新型可持续智能材料,已成为生物医学领域的研究热点。本文基于第391期双清论坛“面向未来的智能材料物质科学”会议内容,对我国在微生物活体智能生物医用材料的设计、集成及应用研究方面的国家重大需求进行了总结。本文回顾了基于合成生物学与材料化学的微生物活体智能材料的设计策略,探讨了单细胞与多细胞协同设计方法,并总结了当前面临的主要挑战。最后,提出了该领域未来5~10年内亟需解决的科学问题和核心技术,并展望了微生物活体智能材料在精准医疗和智能药物递送等领域的发展方向。
2025年03期 v.39 465-473页 [查看摘要][在线阅读][下载 1448K]