2维原子晶体材料的研究现状与未来STATUS AND PROSPECTS:TWO-DIMENSIONAL ATOMIC CRYSTAL MATERIALS
任文才;成会明;刘忠范;许宁生;陈克新;苗鸿雁;
摘要(Abstract):
近年来,以石墨烯为代表的2维原子晶体材料因其独特的2维结构、丰富而新奇的物理化学性质与广阔的应用前景,迅速成为凝聚态物理与材料科学领域的研究前沿。本文概要地介绍了石墨烯的制备、石墨烯的物理与物性、石墨烯的可能应用及其他2维原子晶体材料的研究进展,并对2维原子晶体材料的未来发展趋势进行了分析与讨论。
关键词(KeyWords): 石墨烯;2维原子晶体;制备;物性;应用
基金项目(Foundation):
作者(Author): 任文才;成会明;刘忠范;许宁生;陈克新;苗鸿雁;
Email:
DOI: 10.16262/j.cnki.1000-8217.2011.05.001
参考文献(References):
- [1]Novoselov K S,Geim A K,Morozov S V et al.Electric Field Effect in Atomically Thin Carbon Films.Science, 2004,306(5696):666—669.
- [2]Geim A K,Novoselov K S.The Rise of Graphene.Nature Mater,2007,6(3):183—191.
- [3]Geim A K.Graphene:Status and Prospects.Science,2009, 324(5934):1530—1534.
- [4]任文才,成会明.石墨烯:完美的二维晶体——2010年诺贝尔物理学奖评述.科学发展报告,2011,72-77.
- [5]Berger C,Song Z M,Li T B et al.Ultrathin Epitaxial Graphite:2d Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics.J Phys Chem B,2004, 108(52):19912—19916.
- [6]Emtsev K V,Bostwick A,Horn K et al.Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide.Nature Mater,2009,8(3):203—207.
- [7]Sprinkle M,Ruan M,Hu Y et al.Scalable Templated Growth of Graphene Nanoribbons on SiC.Nature Nanotechnol, 2010,5(10):727—731.
- [8]Stankovich S,Dikin D A,Dommett G H B et al.Graphene-Based Composite Materials.Nature,2006,442(7100): 282—286.
- [9]Stankovich S,Dikin D A,Piner R D et al.Synthesis of Graphene -Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide.Carbon,2007,45(7):1558—1565.
- [10]Park S,Ruoff R S.Chemical Methods for the Production of Graphenes.Nature Nanotechnol,2009,4(4):217—224.
- [11]Dreyer D R,Park S,Bielawski C W et al.The Chemistry of Graphene Oxide.Chem Soc Rev,2010,39(1):228—240.
- [12]Kim K S,Zhao Y,Jang H et al.Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature,2009,457(7230):706—710.
- [13]Li X S,Cai W W,An J H et al.Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science,2009,324(5932):1312—1314.
- [14]Bae S,Kim H,Lee Y et al.Roll-to-Roll Production of 30- Inch Graphene Films for Transparent Electrodes.Nature Nanotechnol,2010,5(8):574—578.
- [15]任文才,高力波,马来鹏等.石墨烯的化学气相沉积法制备.新型炭材料,2011,26(1):71-80.
- [16]Zhi L J,Mullen K.A Bottom-up Approach from Molecular Nanographenes to Unconventional Carbon Materials.J Mater Chem,2008,18(13):1472—1484.
- [17]Yang X Y,Dou X,Rouhanipour A et al.Two-Dimensional Graphene Nanoribbons.J Am Chem Soc,2008,130 (13):4216.
- [18]Cai J M,Ruffieux P,Jaafar R et al.Atomically Precise Bottom -up Fabrication of Graphene Nanoribbons.Nature, 2010,466(7305):470—473.
- [19]Segal M.Selling Graphene by the Ton.Nature Nanotechnol, 2009,4(10):611—613.
- [20]Pei S F,Zhao J P,Du J H et al.Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids.Carbon,2010,48(15): 4466—4474.
- [21]Wu Z S,Ren W C,Gao L B et al.Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation.ACS Nano,2009,3(2):411—417.
- [22]Li X L,Zhang G Y,Bai X D et al.Highly Conducting Graphene Sheets and Langmuir-Blodgett Films.Nature Nanotechnol, 2008,3(9):538—542.
- [23]Hernandez Y,Nicolosi V,Lotya M et al.High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nature Nanotechnol,2008,3(9):563—568.
- [24]Huang P Y,Ruiz-Vargas C S,van der Zande A M,et al.Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts.Nature,2011,469(7330):389—392.
- [25]Dikin D A,Stankovich S,Zimney E J et al.Preparation and Characterization of Graphene Oxide Paper.Nature,2007, 448(7152):457—460.
- [26]Eda G,Chhowalla M.Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv Mater,2010,22(22):2392—2415.
- [27]Zhao J P,Ren W C,Pei S F et al.Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films.ACS Nano,2010,4(9):5245—5252.
- [28]Xu Y X,Sheng K X,Li C et al.Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process.ACS Nano, 2010,4(7):4324—4330.
- [29]Lee S H,Kim H W,Hwang J O et al.Three-Dimensional Self-Assembly of Graphene Oxide Platelets into Mechanically Flexible Macroporous Carbon Films.Angew Chem,2010, 49(52):10084—10088.
- [30]Chen Z P,Ren W C,Gao L B et al.Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition.Nature Mater, 2011,10(6):424—428.
- [31]Novoselov K S,Geim A K,Morozov S V et al.Two-Dimensional Gas of Massless Dirac Fermions in Graphene.Nature, 2005,438(7065):197—200.
- [32]Zhang Y B,Tan Y W,Stormer H L et al.Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene.Nature,2005,438(7065):201—204.
- [33]Novoselov K S,Jiang Z,Zhang Y et al.Room-Temperature Quantum Hall Effect in Graphene.Science,2007,315 (5817):1379.
- [34]Ghahari F,Zhao Y,Cadden-Zimansky P et al.Measurement of the Nu=1/3 Fractional Quantum Hall Energy Gap in Suspended Graphene.Phys Rev Lett,2011,106(4):046801.
- [35]Katsnelson M I,Novoselov K S,Geim A K.Chiral Tunnelling and the Klein Paradox in Graphene.Nature Phys,2006, 2(9):620—625.
- [36]Bolotin K I,Sikes K J,Jiang Z et al.Ultrahigh Electron Mobility in Suspended Graphene.Solid State Commun, 2008,146(9—10):351—355.
- [37]Dean C R,Young A F,Meric I et al.Boron Nitride Substrates for High-Quality Graphene Electronics.Nature Nanotechnol,2010,5(10):722—726.
- [38]Abanin D A,Morozov S V,Ponomarenko L A et al.Giant Nonlocality near the Dirac Point in Graphene.Science, 2011,332(6027):328—330.
- [39]Zhang Y B,Tang T T,Girit C et al.Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene.Nature, 2009,459(7248):820—823.
- [40]Levy N,Burke S A,Meaker K et al.Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles.Science,2010,329(5991):544—547.
- [41]Nair R R,Blake P,Grigorenko A N et al.Fine Structure Constant Defines Visual Transparency of Graphene.Science, 2008,320(5881):1308—1308.
- [42]Wang F,Zhang Y B,Tian C S et al.Gate-Variable Optical Transitions in Graphene.Science,2008,320(5873): 206—209.
- [43]Lee C,Wei X D,Kysar J W et al.Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008,321(5887):385—388.
- [44]Balandin A A,Ghosh S,Bao W Z et al.Superior Thermal Conductivity of Single-Layer Graphene.Nano Lett,2008,8 (3):902—907.
- [45]Ghosh S,Bao W Z,Nika D L et al.Dimensional Crossover of Thermal Transport in Few-Layer Graphene.Nature Mater, 2010,9(7):555—558.
- [46]Schedin F,Geim A K,Morozov S V et al.Detection of Individual Gas Molecules Adsorbed on Graphene.Nature Mater, 2007,6(9):652—655.
- [47]Son Y W,Cohen M L,Louie S G.Half-Metallic Graphene Nanoribbons.Nature,2006,444(7117):347—349.
- [48]Lin Y M,Jenkins K A,Valdes-Garcia A et al.Operation of Graphene Transistors at Gigahertz Frequencies.Nano Lett, 2009,9(1).422—426.
- [49]Lin Y M,Dimitrakopoulos C,Jenkins K A et al.100-Ghz Transistors from Wafer-Scale Epitaxial Graphene.Science, 2010,327(5966):662.
- [50]Lin Y M,Valdes-Garcia A,Han S J et al.Wafer-Scale Graphene Integrated Circuit.Science,2011,332(6035): 1294—1297.
- [51]Liao L,Lin Y C,Bao M Q et al.High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate.Nature, 2010,467(7313):305—308.
- [52]Levendorf M P,Ruiz-Vargas C S,Garg S et al.Transfer-Free Batch Fabrication of Single Layer Graphene Transistors. Nano Lett,2009,9(12):4479—4483.
- [53]Liu M,Yin X B,Ulin-Avila E et al.A Graphene-Bsed Broadband Optical Modulator.Nature,2011,474(7349):64—67.
- [54]Li X L,Wang X R,Zhang L et al.Chemically Derived,Ultrasmooth Graphene Nanoribbon Semiconductors.Science, 2008,319(5867):1229—1232.
- [55]Zhou S Y,Gweon G H,Fedorov A V et al.Substrate-Induced Bandgap Opening in Epitaxial Graphene.Nature Mater, 2007,6(11):916—916.
- [56]Elias D C,Nair R R,Mohiuddin T M G et al.Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane.Science,2009,323(5914):610—613.
- [57]Nair R R,Ren W C,Jalil R et al.Fluorographene:A Two-Dimensional Counterpart of Teflon.Small,2010,6(24): 2877—2884.
- [58]Zhu Y W,Murali S,Cai W W et al.Graphene and Graphene Oxide:Synthesis,Properties,and Applications.Adv Mater, 2010,22(46):5226—5226.
- [59]Ramanathan T,Abdala A A,Stankovich S et al.Function-alized Graphene Sheets for Polymer Nanocomposites.Nature Nanotechnol,2008,3(6):327—331.
- [60]Stoller M D,Park S J,Zhu Y et al.Graphene-Based Ultracapacitors. Nano Lett,2008,8(10):3498—3502.
- [61]Rao C N R,Sood A K,Subrahmanyam K S et al.Graphene: The New Two-Dimensional Nanomaterial.Angew Chem,2009,48(42):7752—7777.
- [62]Uthaisar C,Barone V.Edge Effects on the Characteristics of Li Diffusion in Graphene.Nano Lett,2010,10(8 ): 2838—2842.
- [63]Yoo E,Kim J,Hosono E et al.Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries.Nano Lett,2008,8(8): 2277—2282.
- [64]Paek S M,Yoo E,Honma I.Enhanced Cyclic Performance and Lithium Storage Capacity of SnO_2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure.Nano Lett,2009,9(1);72—75.
- [65]Wu Z S,Ren W C,Wen L et al.Graphene Anchored with Co304 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance.ACS Nano,2010,4(6):3187—3194.
- [66]Wu Z S,Wang D W,Ren W C et al.Anchoring Hydrous RuO_2 on Graphene Sheets for High-Performance Electrochemical Capacitors.Adv Funct Mater,2010,20(20): 3595—3602.
- [67]Wu Z S,Ren W C,Wang D W et al.High-Energy MnO_2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors.ACS Nano,2010,4(10):5835—5842.
- [68]Wang D W,Li F,Zhao J P et al.Fabrication of Graphene/ Polyaniline Composite Paper Via in Situ Anodic Electropoly-merization for High-Performance Flexible Electrode.ACS Nano,2009,3(7):1745—1752.
- [69]Bonaccorso F,Sun Z,Hasan T et al.Graphene Photonics and Optoelectronics.Nature Photonics,2010,4(9):611—622.
- [70]Scheuermann G M,Rumi L,Steurer P et al.Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction.J Am Chem Soc,2009,131 (23):8262—8270.
- [71]Dreyer D R,Jia H P,Bielawski C W.Graphene Oxide;A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions.Angew Chem,2010,49(38):6813—6816.
- [72]Zhou M,Zhai Y M,Dong S J.Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide.Anal Chem,2009,81(14):5603—5613.
- [73]Cohen-Karni T,Qing Q,Li Q et al.Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording. Nano Lett,2010,10(3):1098-1102.
- [74]Bunch J S,van der Zande A M,Verbridge SS et al.Electromechanical Resonators from Graphene Sheets.Science, 2007,315(5811):490-493.
- [75]Meyer J C,Girit C O,Crommie M F et al.Imaging and Dynamics of Light Atoms and Molecules on Graphene.Nature, 2008,454(7202):319-322.
- [76]Novoselov K S,Jiang D,Schedin F et al.Two-Dimensional Atomic Crystals.P Natl Acad Sci USA,2005,102(30): 10451-10453.
- [77]Li G X,Li Y L,Liu H B et al.Architecture of Graphdiyne Nanoscale Films.Chern Commun,2010,46(19 ): 3256—3258.
- [78]Coleman J N,Lotya M,O'Neill A et al.Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science,2011,331(6017):568—571.
- [79]Zhang Z H,Guo W L.Energy-Gap Modulation of BN Ribbons by Transverse Electric Fields:First-Principles Calculations. Phys Rev B,2008,77(7):075403.
- [80]Liu R F,Cheng C.Ab Initio Studies of Possible Magnetism in a Bn Sheet by Nonmagnetic Impurities and Vacancies. Phys Rev B,2007,76(1):014405.
- [81]Radisavljevic B,Radenovic A.Brivio J et al.Single-Layer MoS_2 Transistors.Nature Nanotechnol,2011,6(3):147—150.