基于人口流动的新冠肺炎疫情风险分析Risk Analysis of COVID-19 Based on Population Flow
贾建民;袁韵;贾轼;
摘要(Abstract):
本文报告我们承担的国家自然科学基金新冠专项项目的研究进展,其主要结果已发表在Nature(Jia等人[1])期刊,同时也报告一些相关的扩展分析。首先,基于在疫情爆发前武汉输入到全国各地的人口数量,建立了时空基准风险模型,成功地预测和解释了新冠疫情在全国各地的时空分布特征。进一步,为了在新冠疫情初期对不同地区的疫情风险进行评估,我们发展了一个社区传播风险指数以及风险探测的一套工具,而传播风险是根据实际确诊人数偏离基准模型预测的显著程度来测量的。这一指数可用于疫情预警系统,来辨识和追踪那些具有高传播风险的地区。最后,我们用统计模型和机器学习的方法评估各种人口流动风险源的异质性,检验他们对新冠疫情传播的相对贡献大小,包括比较武汉居民与非武汉居民、不同年龄段、不同性别等对疫情传播的影响。
关键词(KeyWords): 人口流动;新冠肺炎;疫情传播;时空风险模型;风险分析
基金项目(Foundation): 国家自然科学基金项目(72042009和72074072);; 深圳市人工智能与机器人研究院(2020—NT001)的资助
作者(Author): 贾建民;袁韵;贾轼;
Email:
DOI: 10.16262/j.cnki.1000-8217.2020.06.003
参考文献(References):
- [1]Jia JS,Lu X,Yuan Y,et al.Population flow drives spatiotemporal distribution of COVID-19in China.Nature,2020,582:389-394.
- [2]Barbosa H,Barthelemy M,Ghoshal G,et al.Human mobility:models and applications.Physics Reports,2018,734:1-74.
- [3]Brockmann D,Hufnagel L,Geisel T.The scaling laws of human travel.Nature,2006,439(7075):462-465.
- [4]Gonzalez MC,Hidalgo CA,Barabasi AL.Understanding individual human mobility patterns.Nature,2008,453(7196):779-782.
- [5]Song C,Qu Z,Blumm N,et al.Limits of predictability in human mobility.Science,2010,327(5968):1018-1021.
- [6]Deville P,Song C,Eagle N,et al.Scaling identity connects human mobility and social interactions.Proceedings of the National Academy of Sciences,2016,113 (26):7047-7052.
- [7]Eubank S,Guclu H,Kumar VSA,et al.Modelling disease outbreaks in realistic urban social networks.Nature,2004,429(6988):180-184.
- [8]Colizza V,Vespignani A.Epidemic modeling in metapopulation systems with heterogeneous coupling pattern:theory and simulations.Journal of Theoretical Biology,2008,251(3):450-467.
- [9]Colizza V,Barrat A,Barthélemy M,et al.The role of the airline transportation network in the prediction and predictability of global epidemics.Proceedings of the National Academy of Sciences,2006,103(7):2015-2020.
- [10]Balcan D,Colizza V,Gon9alves B,et al.Multiscale mobility networks and the spatial spreading of infectious diseases.Proceedings of the National Academy of Sciences,2009,106(51):21484-21489.
- [11]Brockmann D,Helbing D.The hidden geometry of complex,network-driven contagion phenomena.Science,2013,342(6164):1337-1342.
- [12]Chretien JP,Riley S,George DB.Mathematical modeling of the West Africa Ebola epidemic.Elife,2015,4:e09186.
- [13]Bansal S,Chowell G,Simonsen L,et al.Big data for infectious disease surveillance and modeling.The Journal of Infectious Diseases,2016,214(suppl 4):S375-S379.
- [14]Pentland A.Reality mining of mobile communications:toward a new deal on data//Dutta S,Mia I eds.The Global Information Technology Report 2008-2009.Geneva:SRO-Kunding,2009:75-80.
- [15]Giannotti F,Pedreschi D.Mobility,data mining and privacy:geographic knowledge discovery.Germany:Springer Science&Business Media,2008.
- [16]Shaman J,Karspeck A.Forecasting seasonal outbreaks of influenza.Proceedings of the National Academy of Sciences,2012,109(50):20425-20430.
- [17]Mossong J,Hens N,Jit M,et al.Social contacts and mixing patterns relevant to the spread of infectious diseases.PLoSMedicine,2008,5(3):e74.
- [18]Kitsak M,Gallos LK,Havlin S,et al.Identification of influential spreaders in complex networks.Nature Physics,2010,6(11):888-893.
- [19]Althouse BM,Scarpino SV,Meyers LA,et al.Enhancing disease surveillance with novel data streams:challenges and opportunities.EPJ Data Science,2015,4(1):1-8.
- [20]Reich NG,Brooks LC,Fox SJ,et al.A collaborative multiyear,multimodel assessment of seasonal influenza forecasting in the United States.Proceedings of the National Academy of Sciences,2019,116(8):3146-3154.
- [21]Wu JT,Leung K,Leung GM.Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan,China:a modelling study.The Lancet,2020,395(10225):689-697.
- [22]Li R,Pei S,Chen B.Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus(SARS-CoV-2).Science,2020,368(6490):489-493.
- [23]Chinazzi M,Davis JT,Ajelli M,et al.The effect of travel restrictions on the spread of the 2019 novel coronavirus(COVID-19) outbreak.Science,2020,368 (6489):395-400.
- [24]Gilbert M,Pullano G,Pinotti F,et al.Preparedness and vulnerability of African countries against importations of COVID-19:a modelling study.The Lancet,2020,395(10227):871-877.
- [25]Rader B,Scarpino SV,Nande A,et al.Crowding and the shape of COVID-19 epidemics.Nature Medicine,2020:1-6.
- [26]Kraemer MUG,Yang CH,Gutierrez B,et al.The effect of human mobility and control measures on the COVID-19epidemic in China.Science,2020,368(6490):493-497.
- [27]Lai S,Ruktanonchai NW,Zhou L,et al.Effect of nonpharmaceutical interventions to contain COVID-19in China.Nature,2020,585:410-413.
- [28]Ruktanonchai NW,Floyd JR,Lai S,et al.Assessing the impact of coordinated COVID-19 exit strategies across Europe.Science,2020,369(6510):1465-1470.
- [29]Newville M,Stensitzki T,Allen DB,et al.LMFIT:Non-linear least-square minimization and curve-fitting for Python.Astrophysics Source Code Library,Record,2016:1606.014.
- [30]Gr9mping U.Variable importance assessment in regression:linear regression versus random forest.The American Statistician,2009,63(4):308-319.
- [31]Altmann A,Tolo?i L,Sander O,et al.Permutation importance:a corrected feature importance measure.Bioinformatics,2010,26(10):1340-1347.
- [32]Snape MD,Viner RM.COVID-19in children and young people.Science,2020,370(6514):286-288.
- [33]Saleem H,Rahman J,Aslam N,et al.Coronavirus disease2019 (COVID-19)in children:vulnerable or spared?a systematic review.Cureus,2020,12(5):e8207.
- [34]Swann OV,Holden KA,Turtle L,et al.Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom:prospective multicentre observational cohort study.BMJ,2020,370:m3249.